Search results for "Affine space"
showing 9 items of 9 documents
Ein Axiomensystem f�r partielle affine R�ume
1994
A partial linear space with parallelism is called partial affine space if it is embeddable in an affine space with the same pointset preserving the parallelism. These partial affine spaces will be characterized by a system of three axioms for partial linear spaces with parallelism.
Covering and differentiation
1995
Darstellung von Hyperebenen in verallgemeinerten affinen Räumen durch Moduln
1994
The starting point of this article is a generalized concept of affine space which includes all affine spaces over unitary modules. Our main result is a representation theorem for hyperplanes of affine spaces: Every hyperplane which satisfies a weak richness condition is induced by a module. 1
Quasi-Projective Varieties
2000
We have developed the theory of affine and projective varieties separately. We now introduce the concept of a quasi-projective variety, a term that encompasses both cases. More than just a convenience, the notion of a quasi-projective variety will eventually allow us to think of an algebraic variety as an intrinsically defined geometric object, free from any particular embedding in affine or projective space.
Proper triangular Ga-actions on A^4 are translations
2013
We describe the structure of geometric quotients for proper locally triangulable additve group actions on locally trivial A^3-bundles over a noetherian normal base scheme X defined over a field of characteristic 0. In the case where dim X=1, we show in particular that every such action is a translation with geometric quotient isomorphic to the total space of a vector bundle of rank 2 over X. As a consequence, every proper triangulable Ga-action on the affine four space A^4 over a field of characteristic 0 is a translation with geometric quotient isomorphic to A^3.
$$O_2(\mathbb {C})$$O2(C)-Vector Bundles and Equivariant Real Circle Actions
2020
The main goal of this article is to give an expository overview of some new results on real circle actions on affine four-space and their relation to previous results on \(O_2(\mathbb {C})\)-equivariant vector bundles. In Moser-Jauslin (Infinite families of inequivalent real circle actions on affine four-space, 2019, [13]), we described infinite families of equivariant real circle actions on affine four-space. In the present note, we will describe how these examples were constructed, and some consequences of these results.
Finite linear spaces in which any n-gon is euclidean
1986
Abstract An n-gon of a linear space is a set S of n points no three of which are collinear. By a diagonal point of S we mean a point p off S with the property that at least two lines through p intersect S in two points. The number of diagonal points is called the type of S. For example, a 4-gon has at most three diagonal points. We call an n-gon euclidean if (roughly speaking) it contains the maximal possible number of 4-gons of type 3. In this paper, we characterize all finite linear spaces in which, for a fixed number n ⩾ 5, any n-gon is euclidean. It turns out that these structures are essentially projective spaces or punctured projective spaces.